Publications

Papers

  1. Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks
    In Advances in Neural Information Processing Systems 2024
    Spotlight
  2. Continuous Ensemble Weather Forecasting with Diffusion models
    Martin Andrae, Tomas LandeliusJoel Oskarsson, and Fredrik Lindsten
    arXiv preprint 2024
  3. Uncertainty Quantification of Pre-Trained and Fine-Tuned Surrogate Models using Conformal Prediction
    Vignesh Gopakumar, Ander Gray, Joel Oskarsson, Lorenzo Zanisi, Stanislas Pamela, Daniel Giles, Matt Kusner, and Marc Peter Deisenroth
    arXiv preprint 2024
  4. MTP-GO: Graph-Based Probabilistic Multi-Agent Trajectory Prediction with Neural ODEs
    Theodor WestnyJoel Oskarsson, Björn Olofsson, and Erik Frisk
    IEEE Transactions on Intelligent Vehicles 2023
  5. Evaluation of Differentially Constrained Motion Models for Graph-Based Trajectory Prediction
    Theodor WestnyJoel Oskarsson, Björn Olofsson, and Erik Frisk
    In 2023 IEEE Intelligent Vehicles Symposium (IV) 2023
  6. Temporal Graph Neural Networks for Irregular Data
    Joel OskarssonPer Sidén, and Fredrik Lindsten
    In Proceedings of The 26th International Conference on Artificial Intelligence and Statistics 2023
  7. Scalable Deep Gaussian Markov Random Fields for General Graphs
    Joel OskarssonPer Sidén, and Fredrik Lindsten
    In Proceedings of the 39th International Conference on Machine Learning 2022

Workshop papers



  1. Valid Error Bars for Neural Weather Models using Conformal Prediction
    Vignesh GopakumarJoel Oskarsson, Ander Gray, Lorenzo Zanisi, Stanislas Pamela, Daniel Giles, Matt Kusner, and Marc Deisenroth
    In ICML Workshop on Machine Learning for Earth System Modeling 2024
    Note: A substantial extension of this research is presented in our paper "Uncertainty Quantification of Pre-Trained and Fine-Tuned Surrogate Models using Conformal Prediction"
  2. Graph-based Neural Weather Prediction for Limited Area Modeling
    Joel OskarssonTomas Landelius, and Fredrik Lindsten
    In NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning 2023
  3. Temporal Graph Neural Networks with Time-Continuous Latent States
    Joel OskarssonPer Sidén, and Fredrik Lindsten
    In ICML Workshop on Continuous Time Methods for Machine Learning 2022
    Note: A substantial extension of this research is presented in our paper "Temporal Graph Neural Networks for Irregular Data"

Theses

  1. Probabilistic Regression using Conditional Generative Adversarial Networks
    Joel Oskarsson
    2020
    MSc Thesis