Temporal Graph Neural Networks for Irregular Data

Per Sidén^{1 2} Joel Oskarsson¹ Fredrik Lindsten¹

¹Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, Linköping, Sweden ²Arriver Software AB

Making Predictions

Forecasting for **arbitrary future time points** by applying predictive model g to unrolled latent states!

Irregular Graph-Structured Time Series

- Consider forecasting for multiple time series related by some known graph structure
- How can irregular observations be dealt with?
 - Irregularly spaced observation times
 - Only a subset of nodes observed at each time point

Time-Continuous Latent States

• GNN as predictive model g

$$\hat{\boldsymbol{y}}_{j}^{n} = \text{GNN}^{g} \left([\boldsymbol{h}^{n}(t_{j}), \boldsymbol{x}_{j}^{n}], \left\{ [\boldsymbol{h}^{m}(t_{j}), \boldsymbol{x}_{j}^{m}] \right\}_{m \in \mathcal{N}(n)} \right)$$

Training with custom loss function \mathcal{L}_{MSE} : MSE with time-continuous weighting function

Experiments with our TGNN4I Model

- We experiment with versions of our TGNN4I model with static, exponen-tial and periodic dynamics
- For non-graph baselines we consider versions that model:
 - All nodes jointly as single high-dimensional time series (joint)
 - The time series in each node independently (node)
- Custom loss \mathcal{L}_{MSE} used also as evaluation metric
- METR-LA Traffic Data

- At each node n a latent state $h^n(t) = \bar{h}_i^n + \tilde{h}^n(t)$ evolves over continuous time
- Between node observations the dynamics of $ilde{m{h}}^n(t)$ are dictated by the linear ODE

 $d\tilde{\boldsymbol{h}}^n(t) = A\tilde{\boldsymbol{h}}^n(t) \ dt, \qquad \tilde{\boldsymbol{h}}^n(t_i) = \hat{\boldsymbol{h}}^n_i$

- Solution dynamics: exponential decay + optional periodic component

- Highway network graph with 207 nodes
- Traffic speed forecasting
- Subsampled to 25%–100% node observations

USHCN Climate Data

- Spatial graph of 1123 nodes
- Daily temperature data
- **Synthetic Periodic Data**
- Random DAG with 20 nodes
- Periodic signals with graph dependencies

Table: \mathcal{L}_{MSE} (×10²) on USHCN and Periodic data

	🐥 USHCN	🔁 Periodic
Predict Previous	16.88	27.52
GRU-D [1] (joint)	$8.03{\pm}0.23$	—
GRU-D [1] (node)	$13.12{\pm}0.03$	$3.13{\pm}0.06$
Transformer (joint)	$7.36{\pm}0.41$	$23.19{\pm}0.38$
Transformer (node)	$15.68 {\pm} 0.32$	$15.39 {\pm} 0.05$
LG-ODE [2]	-	$16.61 {\pm} 0.23$
TGNN4I (static)	$6.97 {\pm} 0.05$	$15.12{\pm}0.05$
TGNN4I (exponential)) 6.72±0.04	$2.91{\pm}0.17$
TGNN4I (periodic)	$6.72 {\pm} 0.05$	1.95 ± 0.11

More Information

 $\hat{\boldsymbol{h}}_{i}^{n}, \bar{\boldsymbol{h}}_{i}^{n}, \boldsymbol{\omega}_{i}^{n} = \operatorname{GRU}(\boldsymbol{h}^{n}(t_{i}), \bar{\boldsymbol{h}}_{i-1}^{n}, \boldsymbol{x}_{i}^{n}, \boldsymbol{y}_{i}^{n})$

• GRU cell extended with **Graph Neural Network (GNN)** components to capture dependencies in the graph neighborhood $\mathcal{N}(n)$

The 26th International Conference on Artificial Intelligence and Statistics

References

Code, Link to Paper: github.com/joeloskarsson/tgnn4i

AISTATS 2023

Correspondence to: joel.oskarsson@liu.se

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. Recurrent neural networks for multivariate time series with missing values. *Scientific Reports*, 8(1):6085, 2018. Z. Huang, Y. Sun, and W. Wang. Learning continuous system dynamics from irregularly-sampled partial observations. In Advances in Neural Information Processing Systems, volume 33, 2020.

