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Background: Temporal Graph Neural Networks

• Time series data with underlying graph structure
• Graph Neural Networks (GNNs) are deep learning models for

graph-structured data
• Temporal GNNs include a time dimension
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TGNN4I: Forecasting Irregular Graph-Structured Time Series

• One time series at each node
• Irregular observations

– Irregular time steps
– Observing subset of nodes

• Forecasting problems
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Time-Continuous Latent States

• Time-continuous latent state in each node
• State defined by:

– State dynamics in-between observations
– State update when node is observed



Temporal Graph Neural Networks for Irregular Data 4 / 8

Latent Dynamics: In-Between Observations

• State in node n
hn(t) = h̄n

i + h̃n(t) (1)

– Static component h̄n
i

– Dynamic component h̃n(t)

• Define h̃n(t) over ]ti, tj ] as solution to the Ordinary Differential
Equation (ODE)

dh̃n(t) = Ah̃n(t) dt (2)

with initial condition h̃n(ti) = ĥn
i .

• Closed form solution:
– Exponential decay
– Periodic dynamics
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Latent Dynamics: Observation Update

• Gated Recurrent Unit (GRU) update
• GRU cell outputs

– New state h̄n
i + ĥn

i

– New static component h̄n
i

– Parameters ωn
i defining latent dynamics

• Extended with GNN layers
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Making Predictions

• Predictive model g maps latent state → prediction

ŷn
j = g(hn(tj)) (3)

– GNN layers in g
• Predictions for arbitrary future time points!

– Custom loss function
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Experiments

Datasets
• Traffic (PEMS-BAY,

METR-LA)
• Climate (USHCN)
• Synthetic periodic

Models
• TGNN4I with alternative

dynamics
• Baseline models

– All nodes (joint)ly
– Independent (node)s

PEMS-BAY
(25% Obs.)

USHCN
(Tmin)

Predict Previous 26.32 16.88
GRU-D (joint) 18.79 8.03
GRU-D (node) 8.79 13.12
Transformer (joint) 12.05 7.36
Transformer (node) 16.49 15.68
LG-ODE 27.00 -
TGNN4I (static) 7.41 6.97
TGNN4I (exponential) 7.10 6.72
TGNN4I (periodic) 7.10 6.72
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Summary

• TGNN4I: A temporal GNN for forecasting irregular data
– Time-continuous latent states to handle irregularity
– GNN components to utilize graph structure
– Predictions for arbitrary future time points

• Code available: github.com/joeloskarsson/tgnn4i
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