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Introduction: Irregularly Observed Graphs

• Consider forecasting for graph-structured time series

• How can irregular observations be dealt with?

– Irregularly spaced observation times

– Only a subset of nodes observed at each time point

• Our solution: A temporal Graph Neural Network (GNN)
with latent states defined over continuous time

Time-Continuous Latent States

• At each node n a latent state hn(t) evolves over contin-
uous time

• Between node observations hn(t) decays exponentially
from ĥn
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• When node n is observed we perform a GRU-like update
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– xn
i are input features and yn

i the new observation

• By applying a predictive model g to the latent state pre-
dictions can be made at arbitrary time points!

Graph Neural Network Components

• Graph-based node interactions are captured by incorpo-
rating GNN components

– GRU-update depends also on node neighborhood N (n)

– GNN used as predictive model g
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Experiments on Traffic Data

• The PEMS-BAY dataset contains traffic speed measure-
ments from the highway network

• We create an irregular version by subsampling and keeping
different % of node observations

• Goal: Predict next
observed value at
each node

• Our full model
(GRU-D-Graph) is
compared to simpler
versions that do not
use graph structure
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More Information

Code, link to paper:
github.com/joeloskarsson/
continuous-temporal-gnn
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