Graph-based Neural Weather Prediction for Limited Area Modeling Joel Oskarsson¹ Tomas Landelius² Fredrik Lindsten¹

¹Division of Statistics and Machine Learning, Department of Computer Science, Linköping University, Sweden ²SMHI, Sweden

Ground Truth Hi-LAM GC-LAM **Figure:** Forecasts of solar radiation (nlwrs) at 57 h lead time

Machine Learning for Weather Forecasting

The latest Neural Weather Prediction (NeurWP) models are as accurate as traditional Numerical Weather Prediction (NWP) systems, but require far less resources.

Traditional NWP NeurWP

Figure: RMSE at different lead times

Neural Limited Area Models

Graph-based NeurWP [1, 2]

- Construct mesh graph covering forecasting area
- Utilize Graph Neural Networks (GNNs) to
 - Encode gridded observations to mesh

Time to produce forecast	Hours	Seconds
Computational resources	Large cluster	Single GPU

Problem formulation: Given initial condition X^0 predict a trajectory X^1, \ldots, X^T of following weather states.

- Learn single time step dynamics model \hat{f}
- Roll out forecast auto-regressively

Existing models focus on global weather forecasting. Our work: Adapt graph-based neural weather prediction for Limited Area Models (LAMs)!

Climate Impact

- Enabling large-scale ensemble forecasting, important for extreme weather prediction
- Providing fast and accurate forecasts for renewable en-

- Process latent representation on mesh
- Decode to grid, producing one time step prediction
- GC-LAM: adaptation of GraphCast [2] to LAM
- Hi-LAM: Extended model with hierarchical mesh graph

Adapting to LAM setting

- LAM mesh graph: Regular quadrilateral mesh
- Area boundary: Forcing along boundary from existing forecast

ergy production

Reducing the energy required to produce forecasts

Dataset: MEPS forecasts

- 6000 forecasts from the MetCoOp Ensemble Prediction System (MEPS)
- Data in 238×268 grid, covering Nordic area
- 17 atmospheric variables: Temperature, wind, pressure, water vapor, solar radiation, humidity, geopotential

Contact and Links

We are attending virtually, please ask questions through the submission webpage or later at joel.oskarsson@liu.se.

Webpage Paper

References

- [1] R. Keisler. Forecasting global weather with graph neural networks. *arXiv preprint arXiv:2202.07575*, 2022.
- [2] R. Lam et al. Learning skillful medium-range global weather forecasting. *Science*, 2023.

Tackling Climate Change with Machine Learning Workshop at NeurIPS 2023