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"In our view, we are currently placed at an exciting moment in weather forecasting history." - ECMWF1

1 https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-learning-weather-forecasting
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https://charts.ecmwf.int/?facets=%7B%22Product%20type%22%3A%5B%22Experimental%3A%20Machine%20lea
rning%20models%22%5D%7D

https://charts.ecmwf.int/?facets=%7B%22Product%20type%22%3A%5B%22Experimental%3A%20Machine%20learning%20models%22%5D%7D
https://charts.ecmwf.int/?facets=%7B%22Product%20type%22%3A%5B%22Experimental%3A%20Machine%20learning%20models%22%5D%7D
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= Graph-based = Transformer-based



• Weather state

• Dynamics model

• Approximate with machine learning model

• Train on dataset of trajectories

• Forecast data: Fast surrogate model

• Reanalysis data: Surpass existing NWP





• 960×1080 (2.5 km) x 65 vertical

• Non-hydrostatic dynamics

• HARMONIE-AROME physics

• IFS HRES and IFSENS boundaries

• 66h forecasts run hourly with 5 ensemble 
members

• Idea: Emulate with fast deep learning model



• Subset of atmospheric variables used:

• Pressure (surface, MSL)

• Geopotential (500, 1000 hPa)

• Wind (lev 65, 850 hPa)

• Temperature (2m, lev 65, 500, 850 hPa)

• Relative humidity (2m, lev 65)

• Total water vapor column

• Net short- and longwave 3h radiation

• Spatial down-sampling ×4 (10 km)

• Additional forcing inputs:

• TOA radiation, time, land/water mask

• Forecast as boundary forcing

• 10 forecasts per day from ~2 years

• 3h time-steps



1 R. Lam, et al. GraphCast: Learning skillful medium-range global weather forecasting, 2022.

• Grid nodes (grid cells)

• Mesh graph

• Graph framework for Limited Area Modeling (LAM)

• Adapting GraphCast1 to LAM: GC-LAM

• Multi-scale edges



• The encode-process-decode framework

• Graph Neural Networks (GNNs)





• Message Passing Neural Network1

• Vector representations of

• Nodes

• Edges

1 J. Gilmer, et al. Neural Message Passing for Quantum Chemistry, 2017. ICML.

P. Battaglia, et al. Relational inductive biases, deep learning, and graph networks, 2018.



• Message Passing Neural Network • Interaction Network1

• MLP = Multi-Layer Perceptron

1  P. Battaglia, et al. Interaction Networks for Learning about Objects, Relations and Physics, 2016. NeurIPS.









• Remove multi-scale edges: 1L-LAM1

• Poor predictions :(

• Hierarchical graph model: Hi-LAM

1 A similar model to: R. Keisler. Forecasting global weather with graph neural networks, 2022.



• 4 levels of nodes in mesh graph

• Intra-level edges

• Inter-level edges between adjacent levels

• Sequential GNN message passing up and down 
the hierarchy





Net longwave radiation

U-component of wind



V-component of wind Total water vapor column



• More details on our models, dataset and results

• https://arxiv.org/abs/2309.17370

https://arxiv.org/abs/2309.17370


• https://github.com/joeloskarsson/
neural-lam

• PyTorch implementation

• Maintained and collaborative

https://github.com/joeloskarsson/neural-lam
https://github.com/joeloskarsson/neural-lam




• Mean Squared Error loss

• Worse at higher resolutions



• Connecting global and LAM models

• What forcing to use?

• How to integrate?

• How to train?

Hi-LAM

IFS

GraphCast AtmoRep

?

?



• Machine learning for NWP

• Graph-based LAM models

• Adapting the graph

• Boundary forcing

• Hi-LAM: Hierarchical graph



joel.oskarsson@liu.se

joeloskarsson.github.io
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Paper
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abs/2309.17370

Code
https://github.com/
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https://arxiv.org/abs/2309.17370
https://arxiv.org/abs/2309.17370
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