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Machine learning for NWP
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—-— Pangu-Weather vs ERAS

"In our view, we are currently placed at an exciting moment in weather forecasting history." - ECMWEF!
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https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-learning-weather-forecasting

Forecasts from ECMWF

2m temperature + 10m wind, 1 week lead time
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Forecasts from:
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https://charts.ecmwf.int/?facets=%7B%22Product%20type%22%3A%5B%22Experimental%3A%20Machine%20learning%20models%22%5D%7D
https://charts.ecmwf.int/?facets=%7B%22Product%20type%22%3A%5B%22Experimental%3A%20Machine%20learning%20models%22%5D%7D

A timeline of global model
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Machine learning for NWP: How?

 Weather state X!
* Dynamics model X! = f(Xt_la e vXt_p)

+ Approximate with machine learning model f ~ f

» Train on dataset of trajectories x1 x2
» Forecast data: Fast surrogate model
« Reanalysis data: Surpass existing NWP
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Neural Weather Prediction for Limited Area Modeling
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MetCoOp Ensemble Prediction System
(MEPS]

960x1080 (2.5 km) x 65 vertical

» Non-hydrostatic dynamics
« HARMONIE-AROME physics

« IFS HRES and IFSENS boundaries

« 66h forecasts run hourly with 5 ensemble
members

» Idea: Emulate with fast deep learning model
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Dataset

» Subset of atmospheric variables used:

Pressure (surface, MSL)
Geopotential (500, 1000 hPa)

Wind (lev 65, 850 hPa)

Temperature (2m, lev 65, 500, 850 hPa)
Relative humidity (2m, lev 65)
Total water vapor column

10

Spatial down-sampling x4 (10 km)

Additional forcing inputs:
* TOA radiation, time, land /water mask
 Forecast as boundary forcing

10 forecasts per day from ~2 years

3h time-steps

Net short- and longwave 3h radiation

2022 2023

2021
|
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Training

Validation

Test
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1

Graph-based Neural Weather Prediction

» Graph framework for Limited Area Modeling (LAM)
« Adapting GraphCast! to LAM: GC-LAM

« Grid nodes (grid cells) ¢ — 08— 08— 0 —0—9
« Mesh graph o o
* Multi-scale edges e ¢ ¢ e
o¢—9 *—90
o ¢ o ©
® © ¢ o o o

I LINKOPING 1 R. Lam, et al. GraphCast: Learning skillful medium-range global weather forecasting, 2022.
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Graph-based Neural Weather Prediction

» The encode-process-decode framework

GC-LAM
(EEhod | LGB0 LES0v® ... &EEeew
/DDA . !
HEEEEEEEEE EEEEEEEEE HEEEEEEEEN
Encode Process Decode-

« Graph Neural Networks (GNNs)
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A Brief Introduction to Graph Neural Networks
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Graph Neural Networks (GNNs]

U,
» Message Passing Neural Network:
* Vector representations of
* Nodes v
M(e,_y,Va;vr)
- Edges e,
.5'—}7"7 vSJ v?" eb—)r}vb:v?"

./ ( C—WUC""’*‘"

E={(a,r),(b,r),(c,7)}

v, —

" 1 J. Gilmer, et al. Neural Message Passing for Quantum Chemistry, 2017. ICML.
LINKOPING P B ’ 1 Relational i . I . 4 .
UNIVERSITY . Battaglia, et al. Relational inductive biases, deep learning, and graph networks, 2018.



Interaction Networks

« Message Passing Neural Network * Interaction Network!
« MLP = Multi-Layer Perceptron

€sr M(eS—W’ Us; v"") és—wr N MLPE([es—wa Vs, v?‘])

ey [ DHESRES

(S

I LINKOPING 1 P. Battaglia, et al. Interaction Networks for Learning about Objects, Relations and Physics, 2016. NeurIPS.
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Back to our LAM models ...
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Boundary forcing

Forcing

Xt

Prediction

Extract Boundary
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GC-LAM: First results and artefactissues
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Dealing with the artefacts

« Remove multi-scale edges: 1L-LAM" * Hierarchical graph model: Hi-LAM

« Poor predictions :(

I LINKOPING 1 A similar model to: R. Keisler. Forecasting global weather with graph neural networks, 2022.
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Hi-LAM: Hierarchical multi-scale graph

* 4 levels of nodes in mesh graph
 Intra-level edges
 Inter-level edges between adjacent levels

* Sequential GNN message passing up and down
the hierarchy

Encode Process Decode—
Hierarchical
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Results: Artefacts

GC-LAM

21

LINKOPING
UNIVERSITY



22

Results: Example forecasts

nlwrs_0 (W/m?), t=19 (57 h)
Ground Truth B Prediction

u_65 (m/s), t=19 (57 h)
Ground Truth ] Prediction

Net longwave radiation 9 | I

U-component of wind
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Results: Errors over time
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Preprint available

* More details on our models, dataset and results

* https://arxiv.org/abs/2309.17370
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Graph-based Neural Weather Prediction for Limited
Area Modeling

Joel Oskarsson Tomas Landelius Fredrik Lindsten
Linkoping University SMHI Linkoping University
Linkoping, Sweden Norrkoping, Sweden Linkoping, Sweden

joel.oskarsson@liu.se tomas.landelius@smhi.se fredrik.lindsten@liu.se

Abstract

The rise of accurate machine learning methods for weather forecasting is creating
radical new possibilities for modeling the atmosphere. In the time of climate
change, having access to high-resolution forecasts from models like these is also
becoming increasingly vital. While most existing Neural Weather Prediction
(NeurWP) methods focus on global forecasting, an important question is how these
techniques can be applied to limited area modeling. In this work we adapt the
graph-based NeurWP approach to the limited area setting and propose a multi-scale
hierarchical model extension. Our approach is validated by experiments with a
local model for the Nordic region.
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https://arxiv.org/abs/2309.17370
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Our implementation: Neural-LAM

* https://github.com/joeloskarsson/
neural-lam

« PyTorch implementation

 Maintained and collaborative

README.md

' Neural-LAM

+ + Neural Weather Prediction
for Limited Area Modeling
Models Graphs Data
Neural-LAM is a repository of graph-based neural weather prediction models for Limited Area Modeling (LAM).
The code uses and . Graph Neural Networks are implemented using and
I I logging is set up through

Area Specific

LINKOPING
II.“ UNIVERSITY


https://github.com/joeloskarsson/neural-lam
https://github.com/joeloskarsson/neural-lam

Outlook: Future Steps
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The problem of over-smoothing

v_65 (m/s), t=18 (54 h)
Ground Truth Prediction

e Mean Squared Error loss

p (XX = N (XU (X01) 02T

« Worse at higher resolutions

II LINKOPING
[ UNIVERSITY




Neural LAM: Next steps

» Connecting global and LAM models
« What forcing to use?
* How to integrate?
* How to train?

IFS

GraphCast AtmoRep

N

?

Hi-LAM
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summary

e Machine learning for NWP

» Graph-based LAM models
 Adapting the graph
* Boundary forcing

« Hi-LAM: Hierarchical graph
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joel.oskarsson@liu. se tomas.landelius@smhi.se fredrik.lindsten@liu.se
joeloskarsson.github.io lindsten.netlify.app

wvint 0 (kg/m?), t=19 (57 h)

Ground Truth

Code
https://github.com/

Paper
https: //arxiv.org/

abs/2309.17370 joeloskarsson/neural-lam
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https://arxiv.org/abs/2309.17370
https://arxiv.org/abs/2309.17370
https://github.com/joeloskarsson/neural-lam
https://github.com/joeloskarsson/neural-lam
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