Building Machine Learning Limited Area Models

Kilometer-Scale Weather Forecasting in Realistic Settings

Joel Oskarsson

Linköping University

Simon Adamov

MeteoSwiss, ETH Zurich

Machine Learning Weather Prediction

Regional Models:

- Higher resolution
- Model challenging processes
- Utilize regional data

The Limited Area Forecasting Problem

Initial conditions Regional Boundary forcing From global model Forcing + static features

Forecast *Regional*

This project: Realistic setting, forced by global forecast (IFS)

A Framework for Machine Learning LAMs

Boundary forcing $\mathbf{f}_{k'-1}^{B} \quad \mathbf{f}_{k'}^{B} \quad \mathbf{f}_{k'+1}^{B}$ $\mathbf{x}_{k-1}\mathbf{x}_{k}$ Interior state

Different atmospheric variables

Different grid layouts

Different length of time steps

Graph-based Model

Datasets

Boundary forcing: ERA5/IFS - 0.25° - 6h

Experiments

IFS

Design Studies - Boundary Type

DANRA
Overlap less important
Growing error inherited from IFS

COSMO
Overlap more important
Forecasting vs. downscaling

Design Studies - Boundary Width - COSMO

The boundary is important but can be smaller than we expected

Verification Sparse - COSMO

Verification Sparse - Threshold Based - COSMO

Verifying the model with appropriate figures and metrics is crucial

Verification Gridded - Energy Spectra - DANRA

Energy spectra showing only slight over-smoothing of high frequencies

Case Study Sabine - COSMO

wind_u_10m starting at 2020-02-08 - 00 UTC

Case Study Sabine - DANRA

wind_v_10m starting at 2020-02-09 - 12 UTC

Outlook

Probabilistic LAMs¹

Regional Earth System Models

Oceanography²

² D. Holmberg, et al. (2025). Accurate Mediterranean Sea forecasting via graph-based deep learning. Preprint. + Ongoing work.

¹ J. Oskarsson, et al. (2024). Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks. NeurlPS. E. Larsson, et al. (2025). Diffusion-LAM: Probabilistic Limited Area Weather Forecasting with Diffusion. CCAI Workshop @ ICLR.

J. Pathak, et al. (2024). Kilometer-scale convection allowing model emulation using generative diffusion modeling. Preprint.

Building Machine Learning Limited Area Models

Kilometer-Scale Weather Forecasting in Realistic Settings

Simon Adamov (MeteoSwiss, ETH)

Joel Oskarsson (LiU)

Co-authors:

Leif Denby (DMI)

Tomas Landelius (SMHI, LiU)

Kasper Hintz (DMI)

Simon Christiansen (DMI)

Irene Schicker (GeoSphere)

Carlos Osuna (MeteoSwiss)

Fredrik Lindsten (LiU)

Oliver Fuhrer (MeteoSwiss)

Sebastian Schemm (ETH, Cambridge)

Paper: https://arxiv.org/abs/2504.09340

Code: https://github.com/joeloskarsson/neural-lam-dev/releases/tag/building-ml-lams

Design Studies - Graph Design - DANRA

4-level hierarchical rectangular graph slightly outperforms the others

Verification Gridded - Precipitation - COSMO

Structure (ML)
Structure (NWP)
Amplitude (ML)
Amplitude (NWP)
Location (ML)
Location (NWP)
Combined (ML)
Combined (NWP)

Verification Gridded - Vertical Profiles

Shown are forecasts for COSMO - DANRA is more balanced

- Model performs worse in the upper atmosphere
- Loss weights can be adjusted

HPC Resources

Configuration	DANRA	COSMO
Dataset size (time steps)	54,896	33,660
GPU Type	NVIDIA A100/H100	NVIDIA GH200
Total GPUs per run	16	256 (H100s)
Pre-training Phase		
Epochs	80	200
Autoregressive rollout steps	1	1
Average training time [h]	144	12
Total GPU hours	2,304	3,072
Fine-tuning Phase		
Epochs	3	50
Autoregressive rollout steps	4	4*
Average training time [h]	36	14
Total GPU hours	576	3,584
Number of Trainings		
Pre-training	12	9
Fine-tuning	12	12
Total GPU-hours	34,560	70,656

Graph design

