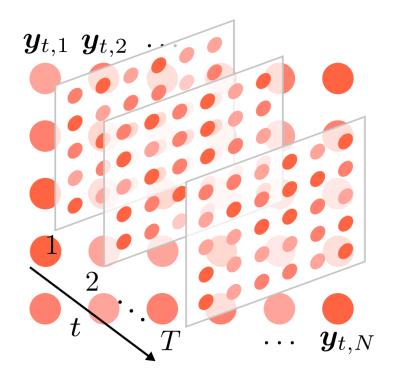
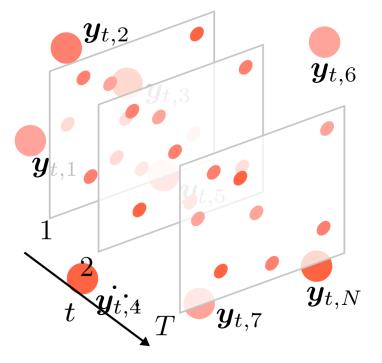


Spatio-temporal systems

Spatio-temporal data

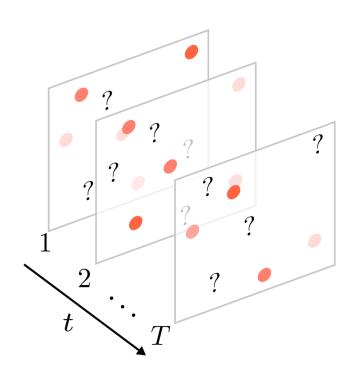


Regular grid

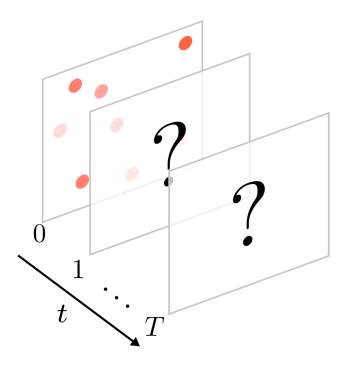


Irregular grid

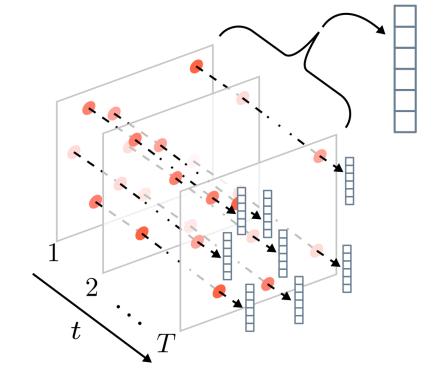
Machine learning problems



Prediction at new times and locations



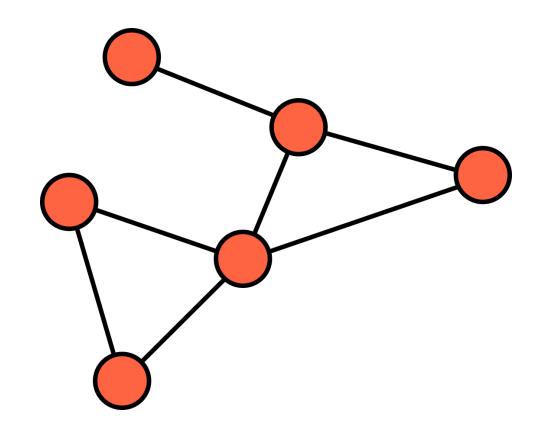
Forecasting



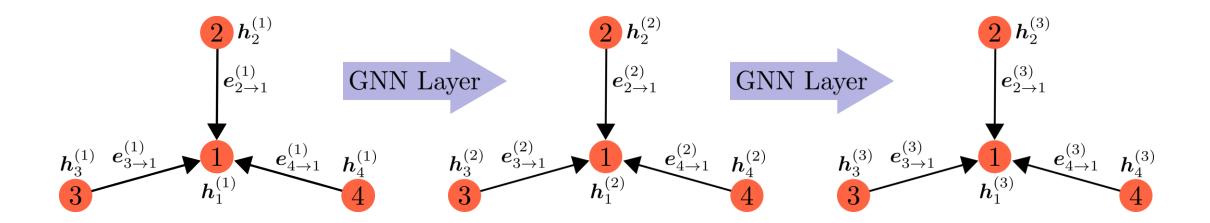
Representation learning

Graph-based machine learning

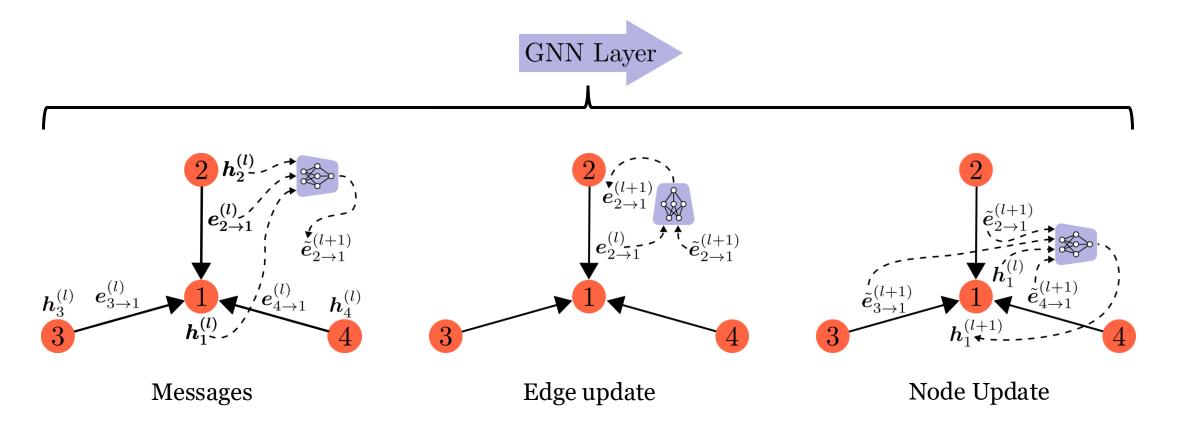
- Graph $\mathcal{G} = (V, E)$
 - \circ Nodes V
 - \circ Edges E
 - Encoding spatial relationships
- Probabilistic graphical models
- Graph Neural Networks (GNNs)



Graph Neural Networks (GNNs)



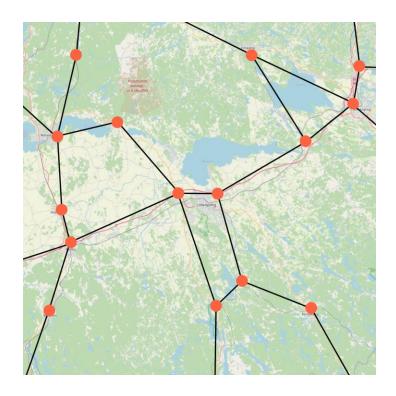
GNN Layer¹



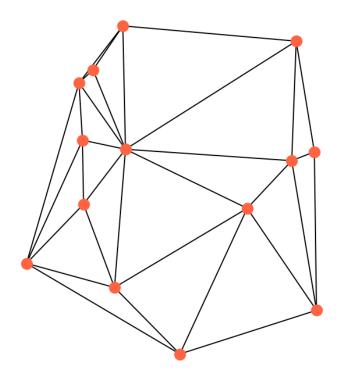
¹ J. Gilmer, et al. (2017). Neural Message Passing for Quantum Chemistry. ICML.,

P. Battaglia, et al. (2018). Relational inductive biases, deep learning, and graph networks. Preprint.

Spatial graphs

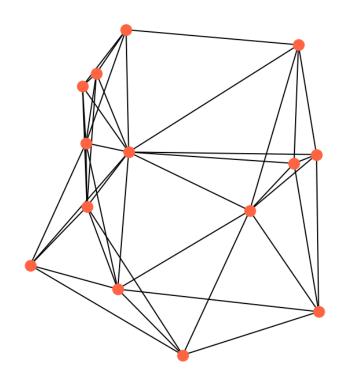


Existing spatial networks¹

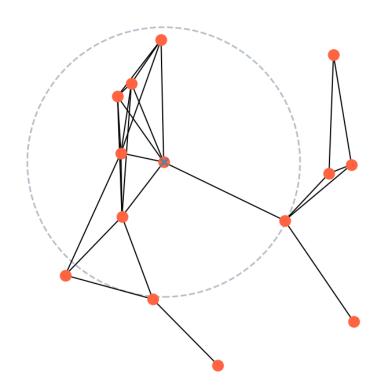


Sets of spatial points

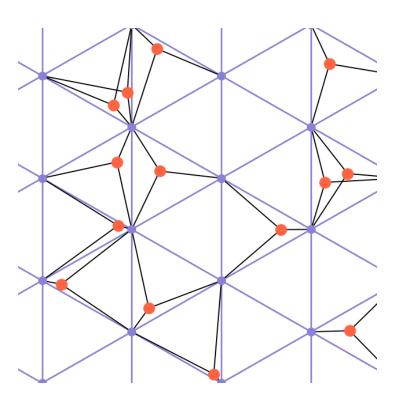
Spatial graph connectivity



k-nearest neighbors graph

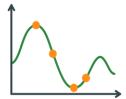


Radius graph



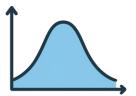
Connect to mesh graph

Papers



Paper 1 AISTATS 2023

Paper 2 IEEE IV 2023



Paper 3 ICML 2022

Paper 4 NeurIPS 2024

Paper 5 Preprint, under review

Temporal Graph Neural Networks for Irregular Data

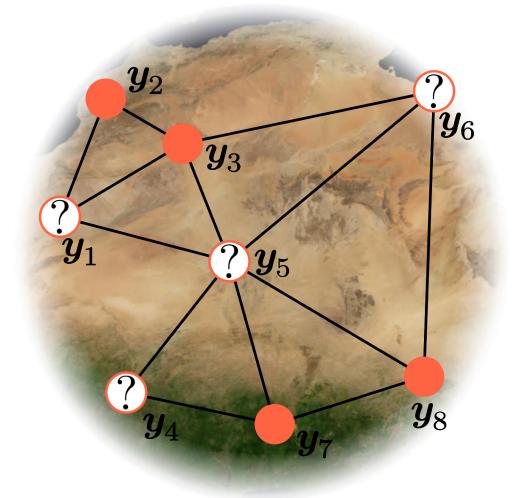
Joel Oskarsson Per Sidén Fredrik Lindsten Linköping University Linköping University Linköping University Arriver Software AB **Abstract** While many works have studied the problem of modeling temporal graph data (Wu et al., 2020a), these approaches generally assume a constant sampling rate and no missing This paper proposes a temporal graph neural netobservations. In real data it is not uncommon to have irregwork model for forecasting of graph-structured ular or missing observations due to non-synchronous meairregularly observed time series. Our TGNN4I surements or errors in the data collection process. Dealmodel is designed to handle both irregular time

m.deisenroth@ucl.ac.uk

of Deen GMRFs originally proposed for lattice

fredrik.lindsten@liu.se

Prediction at unobserved locations



- Example applications:
 - Climate monitoring
 - Social networks
- Gaussian models

$$\begin{bmatrix} \boldsymbol{y}_1 \\ \boldsymbol{y}_2 \\ \vdots \\ \boldsymbol{y}_N \end{bmatrix} = (\boldsymbol{z} + \epsilon) \sim \mathcal{N}(\boldsymbol{\mu}, Q^{-1} + \sigma^2 I)$$

$$\epsilon \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 I)$$

Deep Gaussian Markov random fields

$$\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{\mu}, Q^{-1}) \qquad g(\boldsymbol{z}) \sim \mathcal{N}(\boldsymbol{0}, I)$$

$$g = g^{(L)} \circ g^{(L-1)} \circ \cdots \circ g^{(1)}$$

$$g^{(2)} \cdots \qquad g^{(L)}$$

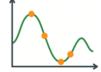
$$\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{\mu}, Q^{-1})$$

$$\mathcal{N}(\boldsymbol{0}, I)$$

• Previous work¹: Regular grids $\Rightarrow \bigwedge$ Paper 3: General graphs

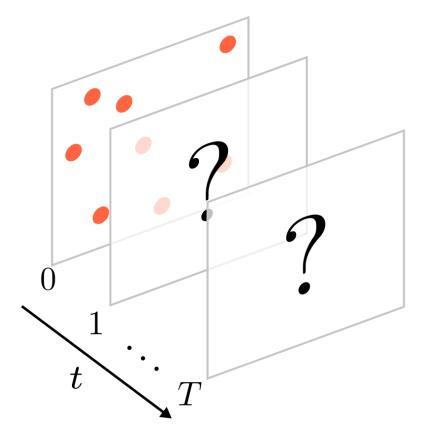
Spatio-temporal forecasting

Deterministic forecasting

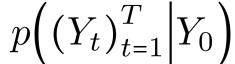


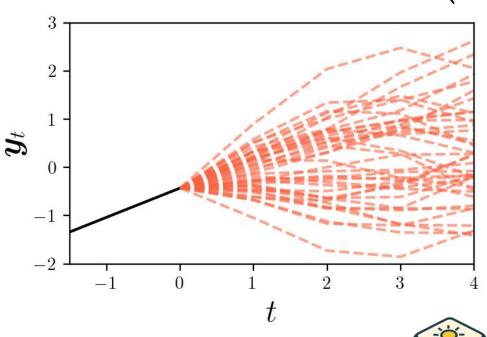
$$\left(\hat{Y}_t\right)_{t=1}^T = f(Y_0)$$

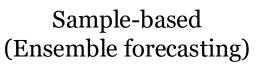
$$Y_t = egin{bmatrix} oldsymbol{-} oldsymbol{y}_{t,1}^{ op} oldsymbol{-} \ oldsymbol{-} oldsymbol{y}_{t,2}^{ op} oldsymbol{-} \ oldsymbol{:} \ oldsymbol{-} oldsymbol{y}_{t}^{ op} oldsymbol{-} oldsymbol{-} \end{bmatrix}$$

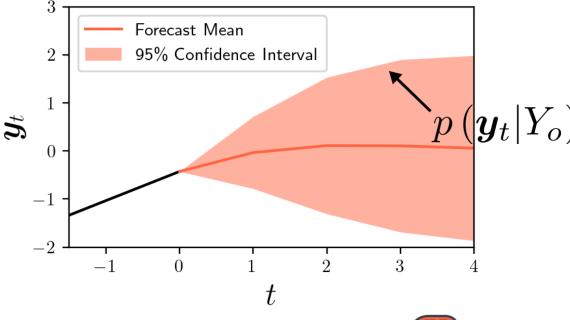


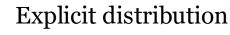
Probabilistic forecasting



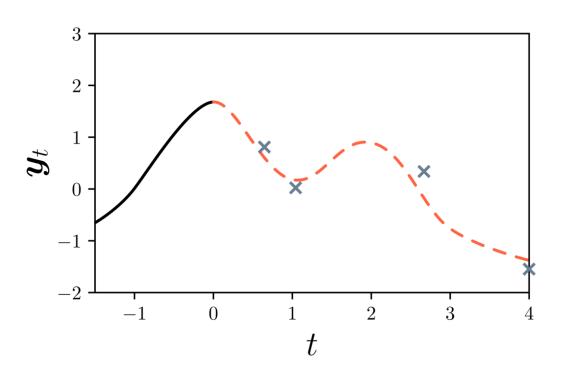


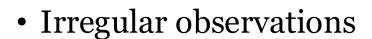


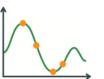




Continuous time







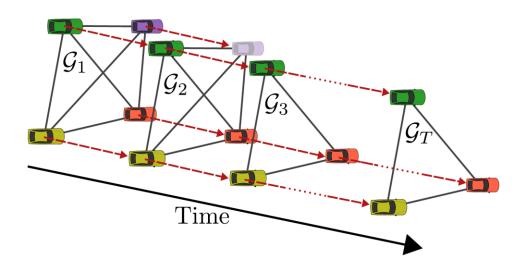
- Paper 1: In spatio-temporal forecasting with GNNs
- Constraining dynamics

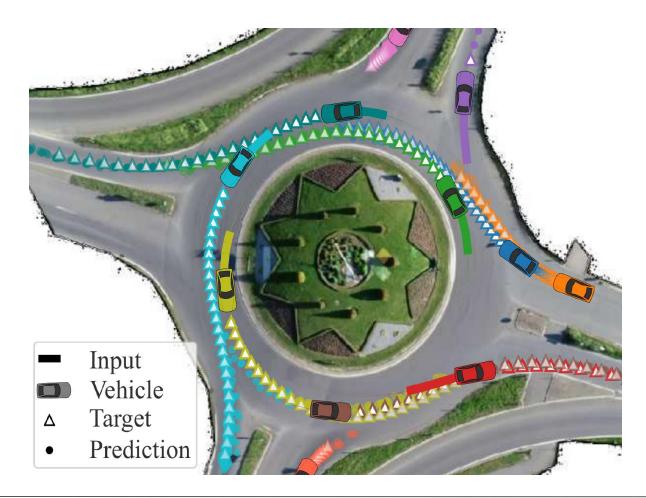
Neural Ordinary
 Differential Equations¹

$$\frac{d}{d\tau} \mathbf{y}(\tau) = f_{\theta}(\mathbf{y}(\tau), \dots)$$

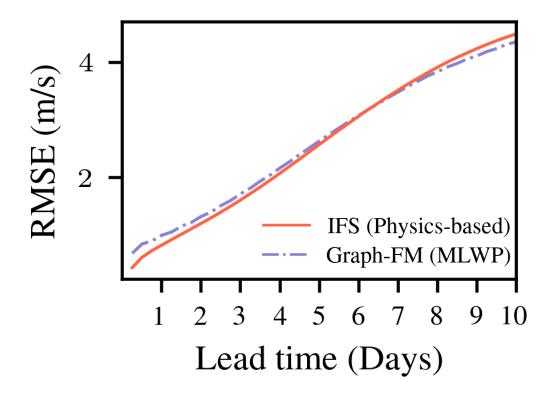
Trajectory forecasting

- Forecasted values are locations
- Multi-agent





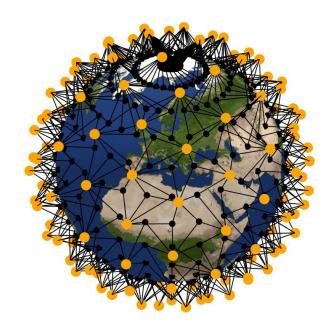
Machine Learning Weather Prediction (MLWP)

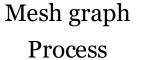


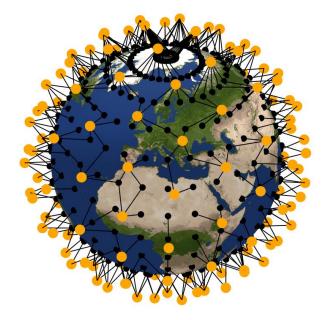
RMSE of 10 m zonal wind

Graph-based MLWP¹

$$\hat{Y}_t = f_{\theta}(Y_{t-1})$$





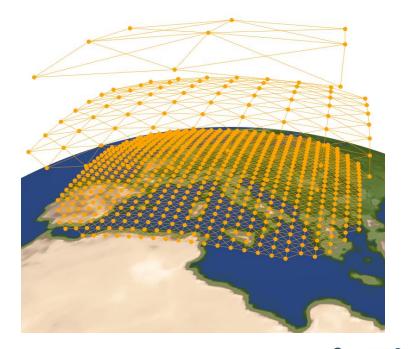


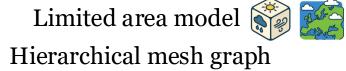
Decode

Encode

Global and regional forecasting

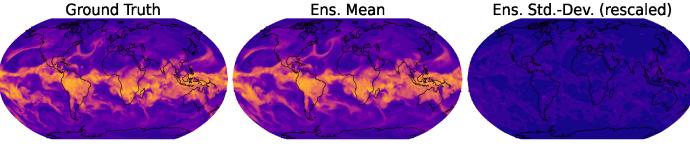
Global model Hierarchical mesh graph





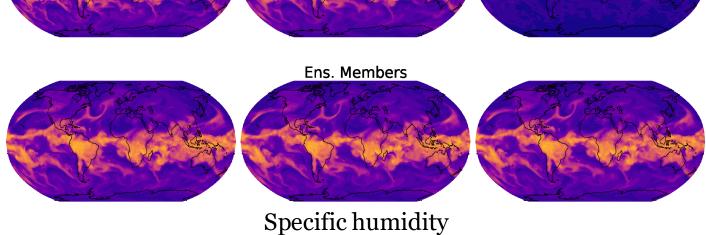
MLWP ensemble forecasting

$$p((Y_t)_{t=1}^T | Y_0) = \prod_{t=1}^T p(Y_t | Y_{t-1})$$



• Latent variable models¹

• Diffusion models²



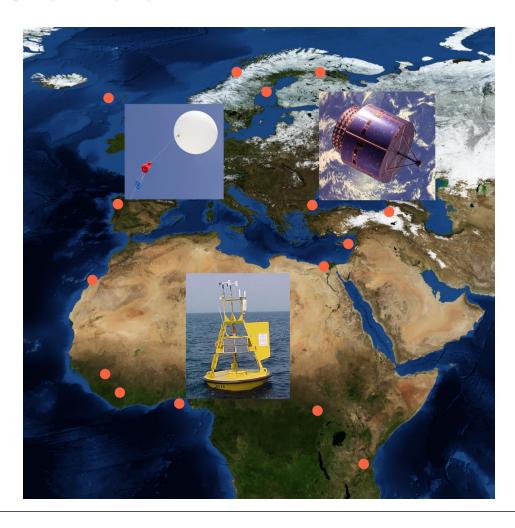
¹ Y. Hu, et al. (2023). SwinVRNN: A data-driven ensemble forecasting model via learned distribution perturbation. JAMES

² I. Price, et al. (2025). Probabilistic weather forecasting with machine learning. Nature.,

M. Andrae, et al. (2025). Continuous Ensemble Weather Forecasting with Diffusion Models. ICLR.,

E. Larsson, et al. (2025). Diffusion-LAM: Probabilistic Limited Area Weather Forecasting with Diffusion. CCAI Workshop @ ICLR.

Outlook



• Irregular observations

Probabilistic forecasting

• MLWP directly using observations

Joel Oskarsson

Paper 1: **J. Oskarsson**, P. Sidén, and F. Lindsten. *Temporal* graph neural networks for irregular data. AISTATS, 2023

Paper 2: T. Westny, **J. Oskarsson**, B. Olofsson, and E. Frisk. *MTP-GO: Graph-based probabilistic multi-agent trajectory prediction with neural ODEs*. IEEE IV, 2023

Paper 3: J. Oskarsson, P. Sidén, and F. Lindsten. Scalable deep Gaussian Markov random fields for general graphs. ICML, 2022

Paper 4: **J. Oskarsson**, T. Landelius, M. P. Deisenroth, and F. Lindsten. *Probabilistic weather forecasting with hierarchical graph neural networks*. NeurIPS, 2024

Paper 5: S. Adamov*, **J. Oskarsson***, et al. *Building machine learning limited area models: Kilometer-scale weather forecasting in realistic settings*. Preprint, under review, 2025

* Equal contribution

Example: Wind speeds

Nodes in red boxes unobserved

