# Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks

**Joel Oskarsson**<sup>1</sup>, Tomas Landelius<sup>2</sup>, Marc Peter Deisenroth<sup>3</sup>, Fredrik Lindsten<sup>1</sup>

<sup>1</sup>Linköping University, Sweden <sup>2</sup>Swedish Meteorological and Hydrological Institute <sup>3</sup>University College London, United Kingdom



#### **Probabilistic weather forecasting**



Currently: • Deterministic models • MSE loss

$$p(X^t|X^{t-1:t-2}, F^t) = \mathcal{N}\left(X^t \middle| \hat{f}(X^{t-1:t-2}, F^t), \sigma^2 I\right)$$

Want:  $\circ$  Capture full distribution  $p(X^{1:T}|X^{-1:0}, F^{1:T})$  $\circ$  Ensemble forecasting



#### Latent variable formulation

• Probabilistic + auto-regressive

$$p(X^t | X^{t-2:t-1}, F^t) = \int \underline{p(X^t | Z^t, X^{t-2:t-1}, F^t)} p(Z^t | X^{t-2:t-1}, F^t) dZ^t$$
Predictor
Latent map

Latent random variable Z<sup>t</sup>
 Captures uncertainty in single-step prediction



### **Graph-based weather forecasting**

 Flexible framework for both global<sup>1</sup> and regional forecasting<sup>2</sup> • Hierarchical graph construction





<sup>1</sup> Keisler, R. (2022). Forecasting global weather with graph neural networks. arXiv preprint. , Lam, R., et al. (2023). Learning skillful medium-range global weather forecasting. *Science*.

<sup>2</sup>Oskarsson et al. (2023). Graph-based Neural Weather Prediction for Limited Area Modeling. *NeurIPS 2023 CCAI Workshop*.

#### **Graph-EFM: Graph-based Ensemble Forecasting Model**



• Graph-FM: Deterministic model using hierarchical graph



## **Training and sampling**

Training

- Maximize variational bound (ELBO)
- $\circ$  First on single-step prediction
- $\circ$  Finetuning on rollouts + using CRPS-based loss

$$\mathcal{L} = \mathcal{L}_{\text{Var}} + \lambda_{\text{CRPS}} \mathcal{L}_{\text{CRPS}}$$

 $\begin{array}{l} \text{Sampling } X^t \\ \circ \text{ Requires single forward-pass} \\ \circ \text{ Contrast: Diffusion models} \end{array}$ 





# **Results:** Limited area modeling

- Surrogate model for forecasting Nordic region
  - Trained on dataset of 6000 forecasts 0
  - 57 h forecasts with 3 h time steps 0
  - 17 variables Ο
- **Boundary forcing**



Ens. Std.-Dev.

Ens. Members









Water vapor (*wvint*)

Std.-Dev.



## **Results: Global forecasting**

- ERA5 on 1.5° grid
- 83 variables (5 surface + 6 atmospheric × 13 pressure levels)
- 10 day forecasts with 6 h steps





### **Results: Global forecasting**

Specific humidity (*q700*)





# Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks

Joel Oskarsson Tomas Landelius Marc Peter Deisenroth Fredrik Lindsten



