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Abstract

Communication is neccesary for groups of
agents to properly coordinate actions. When
agents learn coordinated strategies it is often
desirable that a suitable communication proto-
col is learned simultaneously. This report gives
an overview of different methods proposed for
multi-agent communication learning. A num-
ber of different models and learning algorithms
are presented, followed by a discussion about
applications and future work.

1 Introduction

Communication and language are central parts of what
we consider human intelligence. The ability to use com-
munication to coordinate efforts is integral to much
of modern society. Communication, although between
computers, has also been at the centre of the digital
transformation of society.

Fueled by developments in the general machine learn-
ing area, and deep learning in particular, new approaches
have been proposed for multi-agent learning. These
approaches balance centralized learning with learning
distributed over multiple agents [Foerster et al., 2018;
Lowe et al., 2017]. Both cooperative and competitive
settings have been considered.

A natural continuation on the work in multi-agent
learning is to introduce the ability for agents to com-
municate. This should improve coordination and lead
to better behaviors. Research in this area might also
lead to further understanding of how human and animal
communication emerges [Foerster et al., 2016]. A num-
ber of approaches for learning communication protocols
between multiple agents have been proposed in the liter-
ature. This report aims to give a short survey over the
area of communication learning and discuss some appli-
cations and future work.

2 Theory

The following sections give an introduction to the setting
and learning algorithms used in communication learning.

2.1 Reinforcement Learning

Most of the proposed approaches to communication
learning build on the framework of Reinforcement Learn-
ing (RL). In the single agent case, RL models an agent
choosing actions to carry out in some environment [Sut-
ton and Barto, 1998]. This can be formally modeled by
a Markov Decision Process (MDP), defined as a 4–tuple
(S,A, p, R). S is the set of possible states the environ-
ment can be in. A is the set of actions available to the
agent. p is a function determining the dynamics of the
environment, that is which state transitions take place
as consequences of agent actions. Only model-free set-
tings, where p is initially unknown to the agent, will be
considered. R is a reward function, determining the re-
ward signal sent to the agent based on states and actions.
In the most general formulations both state transitions
and rewards can be stochastic, described by probability
distributions.

This framework can easily be extended to a setting
with N agents [Lowe et al., 2017]. In this case there is
one action space per agent A1,A2, . . . ,AN and p takes
the actions of all agents into account. The agents also re-
ceive individual rewards, extending R to N reward func-
tions R1, R2, . . . , RN .

In communication learning the state is often not fully
observable by the agents, extending the setting to a Par-
tially Observable MDP (POMDP) [Das et al., 2019]. In
this case the agents do not observe the environment state
S ∈ S directly. Instead each agent receives an observa-
tion ωi from its observation space Oi. ωi is correlated
with the full state S. The partially observable setting
is of particular interest when considering communicat-
ing agents. By communication the agents can combine
information from all observations ω1, ω2, . . . , ωN to form
a more complete belief about S [Das et al., 2019].

2.2 Algorithms

The goal of RL in POMDPs is for each agent to learn a
policy πi(ai|ωi), describing how it should act based on
its given observation [Sutton and Barto, 1998]. The best
policy maximizes the expected reward the agent receives.
There are many different ways to learn such a policy.



Policy Gradient Methods
Many of the communication models proposed make use
of policy gradient methods [Sutton and Barto, 1998] with
neural networks as function approximators. These meth-
ods directly parametrize the policy πi as a neural net-
work, with the output of the network describing a prob-
ability distribution over Ai. The problem of searching
for a good policy then reduces to finding a set of network
parameters θi that makes the policy πθi(ai|ωi) achieve
high expected reward.

Q-Learning
Another method that has found use in multi-agent set-
tings is Q-learning [Kasai et al., 2008; Foerster et al.,
2016]. The Q-function is defined as the expected future
reward when the agent follows policy π:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γkR(St+k+1)

∣∣∣∣∣St = s,At = a

]
(1)

where γ is a discount factor, determining the value of fu-
ture rewards [Sutton and Barto, 1998]. In traditional Q-
learning a technique called temporal-difference learning
[Sutton and Barto, 1998] is used to estimate Qπ(s, a).
In Deep Q-learning Qπ(s, a) is estimated using a neu-
ral network, referred to as the Deep Q-Network (DQN).
The policy π(a|s) for a state s can then be retrieved
by choosing the action a that maximizes Qπ(s, a). Q-
learning can readily be extended to the POMDP setting
[Egorov, 2015].

3 Learning to Communicate

The problem of learning to communicate extends the
POMDP setting by providing a communication interface
between the agents. This complicates the learning task
by incentivizing the agents to:

1. Condition their actions on messages received

2. Learn what messages to send

A useful distinction can be made between methods using
discrete or continuous messages.

The following sections consider settings where agents
are trained to collaborate. This is generally achieved by
letting all agents have the same reward function R and
thus receiving the same reward.

3.1 Discrete Messages

When learning communication with discrete messages
the set of possible messages M is restricted to some fi-
nite set. A typical choice is M = {0, 1}L, the set of
binary vectors of some fixed length L [Kasai et al., 2008;
Foerster et al., 2016].

Q-learning
Kasai et al. [2008] consider two agents communicat-
ing with binary messages of length L ≤ 4 . Their
experiments make use of traditional Q-learning, es-
timating separate Q-values for state-action pairs and
state-message pairs. An action policy is then derived

from Qa(si, ai) and a messaging policy is derived from
Qm(si,mi). The messaging policy defines which mes-
sage to send in each state. Traditional Q-learning does
not scale well to large environments [Lin, 1993], but is
possible here due to the small size of the state, action
and message spaces.

RIAL

Foerster et al. [2016] extend the work on discrete mes-
sage communication with the use of deep Q-learning.
They introduce a communication learning method called
Reinforced Inter-Agent Learning (RIAL). Similarly to
the work by Kasai et al. [2008] RIAL uses separate Q-
values for actions and messages. In RIAL these Q-values
are however estimated using DQN. Foerster et al. [2016]
also extend the DQN method by sharing parameters be-
tween all agents’ networks. To give the agents some no-
tion of memory throughout each episode Recurrent Neu-
ral Networks (RNNs) are used for the Q-networks.

In their experiments Foerster et al. [2016] try evalu-
ating RIAL on a digit communication task. Two agents
are shown individual images of digits from the MNIST
dataset1 and are supposed to communicate their digit
to the other agent. In this test the RIAL method fails
to learn useful communication. The authors hypothe-
size that this is because the agents fail to discover that
the communication can be useful. In light of this result
Eccles et al. [2019] in a later paper propose a modified
learning method for RIAL. By changing the minimized
loss a bias is introduced for both sending useful messages
and for listening to other agents. It is shown that this
modification allows RIAL-agents to successfully commu-
nicate digits.

DIAL

One of the shortcomings of the RIAL method is the weak
connection between actions and messages. Foerster et
al. [2016] propose a way to get around this through
an extension called Differentiable Inter-Agent Learning
(DIAL). DIAL only uses DQN for selecting actions and
lets the messaging parts of the model be trained implic-
itly. This is possible since the actions selected depend
on any messages received.

To understand further why this approach works and
why it is not applicable to RIAL, recall how neural net-
works are trained. The Q-network needs to be trained
using gradient descent [Mnih et al., 2015]. A conse-
quence of this is that gradients are calculated with re-
spect to all trainable parameters. Discretization, such
as for the messages in RIAL, results in gradients being
either undefined or equal to 0. DIAL gets around this
by introducing a Discretize/Regularize Unit (DRU).

Let m̂t
i ∈ RL be a specific message output from agent

i’s network at time t. The DRU is applied to this real-
valued vector to get the final message mt

i = DRU(m̂t
i)

that is sent to other agents. The DRU has different be-
haviours during training and testing. Its effects are ap-

1http://yann.lecun.com/exdb/mnist/



plied entry-wise over the message vector. During train-
ing the message is regularized by added noise:

DRU(m̂t
i) = σ(m̂t

i + ε) ∈ ]0, 1[ (2)

where σ is the sigmoid function and ε ∼ N (0, σ2
n) gaus-

sian noise with variance σ2
n. At test-time the message is

discretized:

DRU(m̂t
i) = I{m̂t

i>0} ∈ {0, 1} (3)

Letting mt
i be continuous during training allows for com-

puting gradients through the DRU. The added noise does
not impact the gradients and thus the messaging system
can be trained. Allowing real-valued messages during
training might seem like a naive approach, but the trick
here lies in the added noise. If the noise has high enough
variance during training the agents can only communi-
cate by selecting very negative or very positive values
for m̂t

i. This will result in values of mt
i close to 0 or 1

respectively. This behavior translates to test-time where
the values for mt

i are in {0, 1}. The choice of σ2
n depends

on the environment [Foerster et al., 2016].
It is noteworthy that RIAL and DIAL do not define

which agent receives the messages or how to combine
messages from many agents. In their experiments Foer-
ster et al. [2016] either consider N = 2 agents or explic-
itly define which agent receives each message.

Also DIAL has been evaluated on the previously intro-
duced digit communication game [Foerster et al., 2016].
Agents using DIAL manage to learn an almost perfect
messaging protocol with each digit encoded as a 4-bit
binary vector.

3.2 Continuous Messages

Communication with continuous messages considers the
very general setting of real-valued messages, M = RL.
Models in this group can easily be designed with com-
pletely differentiable messaging mechanisms, avoiding
any problems with gradient computations found in dis-
crete message communication.

CommNet
Sukhbaatar et al. [2016] have proposed the model Com-
munication Neural Net (CommNet) for multi-agent com-
munication with continuous messages. In the CommNet
model agent i selects an action ati and a messagemt

i ∈ RL
at timestep t. All messages are then combined by taking
the mean

m̄t =
1

N

N∑
i=1

mt
i (4)

and m̄t is fed to all agents at the next time step. It is pos-
sible to only require the agents to act at some timesteps,
allowing for multiple rounds of only communication in-
between each action. CommNet is trained using REIN-
FORCE with an RNN for each agent.

A useful property of the CommNet model is that it
allows for a dynamic amount of communicating agents
throughout a single episode [Sukhbaatar et al., 2016].
This is a direct consequence of the fact that the mean

calculation in eq. 4 can be carried out for any amount
of input messages N .

Sukhbaatar et al. [2016] experiment with the
CommNet model in a 4-way traffic junction simulation.
Agent cars are assigned a random route to follow and at
each time step decide between taking a step along their
route or staying in place. Observations are limited to
small neighborhoods around each car. If any cars have
collided after 40 time steps the episode is considered a
failure. The CommNet model achieves a failure rate of
0.3±0.1% (mean and standard deviation over 5 repeti-
tions) in the traffic junction experiment, compared to
15.8±12.5% for independent, non-communicating agents
[Sukhbaatar et al., 2016].

IC3Net

Singh et al. [2019] consider the task of learning when to
communicate. In their setting agents do not just decide
what message to send, but also if they should send a
message at all or stay silent. To learn this behaviour the
messaging part of the CommNet model is extended. The
agents select an additional gating action gti ∈ {0, 1} at
each time step. The gating action determines if the agent
should sent a message or not. Gating is applied to the
message output m̂t

i ∈ RL of the network as mt
i = gtim̂

t
i,

before the message is passed to the mean in eq. 4. This
extended version of CommNet is named Individualized
Controlled Continuous Communication Model (IC3Net).
An additional policy π(gi|ωi) is introduced with the ad-
dition of the gating action. IC3Net is trained using RE-
INFORCE for both the gating and action policies.

TarMAC

A somewhat logical extension to the CommNet model is
to consider targeted communication. Das et al. [2019]
tackle this problem by introducing the Targeted Multi-
Agent Communication (TarMAC) model. TarMAC ex-
tends CommNet by changing out the mean computa-
tion (eq. 4) for an attention mechanism. Attention
is a deep learning mechanism popularized by its use
in natural language processing [Vaswani et al., 2017;
Bahdanau et al., 2014]. The general idea of the mecha-
nism is to allow models to pay more attention to specific
parts of available information.

TarMAC implements attention by matching a query
from each agent with the incoming messages. The query
is a vector qti , output by each agent network at every time
step. The messaging part of CommNet is also extended
to output both the message mt

i and a description vector
kti . kti can be interpreted as encoding the topic of the
message and is matched to the query vectors of other
agents. A weighting αt+1

j over incoming messages to
agent j at time t+ 1 is computed as:

αt+1
j = sm

([
qt+1
j

ᵀ
kt1√

da
,
qt+1
j

ᵀ
kt2√

da
, . . . ,

qt+1
j

ᵀ
ktN√
da

]ᵀ)
(5)

where sm is the softmax function and da the dimensional-
ity of query and description vectors. The actual message



rt+1
j received by agent j is then:

rt+1
j =

N∑
i=1

αt+1
ji mt

i (6)

Since all of the attention mechanism is completely dif-
ferentiable the model can still be trained with a policy
gradient method. Das et al. [2019] extend the REIN-
FORCE training used for CommNet to a full Actor-
Critic method [Sutton and Barto, 1998]. Following an
approach proposed by Lowe et al. [2017], the TarMAC
model is trained using a centralized critic taking into
account the actions of all agents.

Das et al. [2019] use a harder version of the traffic
junction environment [Sukhbaatar et al., 2016] to evalu-
ate TarMAC. In their experiments the environment con-
tains 4 junctions where cars have to avoid collisions. Tar-
MAC reaches a failure rate of 2.9±1.6%, compared to
21.1±3.4% for just CommNet.

Message Aggregation
Other approaches for combining continuous messages
have been proposed in the literature. Peng et al. [2017]
use a bi-directional RNN to aggregate the messages
of agents in their BiCNet model. ATOC [Jiang and
Lu, 2018] sets up small communication groups dynami-
cally during episodes and use Long Short Term Memory
(LSTM) [Hochreiter and Schmidhuber, 1997] for intra-
group message aggregation.

4 Discussion
Initial models like DIAL and CommNet have shown that
multi-agent communication learning is possible and use-
ful. Extensions inspired by the way humans commu-
nicate have improved performance on benchmarks cre-
ated to test the proposed methods. It is clear that this
line of research can be useful in applications such as au-
tonomous vehicles or collaborative robotics. Consider for
example the traffic junction environment [Sukhbaatar et
al., 2016], which easily translates to coordination of au-
tonomous cars in a city.

Most cyber-physical systems in use today feature some
form of communication-technology. Deploying commu-
nicating agents as parts of such systems could be done
for example by wrapping messages between agents in IP-
packets. Deploying RL systems can often be hard due
to mismatches between the training and deployment en-
vironments. With communication learning this is fur-
ther complicated by possible dropped and delayed mes-
sages. These concerns point towards robust communica-
tion learning as a useful direction for future research.

Foerster et al. [2016] emphasize the possibility to
further understanding of how human communication
has emerged by studying how communication emerges
among machines. Useful results in this direction are
however lacking so far. The area is quite young, but
it is unclear if the directions being pursued are likely
to give any insights into human communication. As in
other areas of artificial intelligence research the reliance

on neural networks tends to give good results, but offer
little new insights to the nature of intelligence.

Many recent works have focused on continuous mes-
sages and training by propagating gradients through
multiple agents. Eccles et al. [2019] on the other hand
argue that RIAL is a more naturalistic and applicable
method. They point to the fact that RIAL is capable of
both decentralized learning and execution. Methods us-
ing continuous messages require some centralization for
computing gradients during training. It is however not
yet clear that decentralized learning is a necessary prop-
erty in applications. Many machine learning systems
are fully trained before being deployed in real-world set-
tings. Updating such systems often include retraining in
a protected environment. Decentralized learning is no
requirement in such cases. It should still be seen as an
important research direction, since there are trends to-
wards erasing the line between training and deployment
through online learning methods.

There are other reasons why methods using discrete
messages could be of greater interest. Discrete mes-
sages are far more interpretable than continuous vectors.
This offers greater opportunities to study the resulting
communication protocols. Being able to understand the
messages would likely be necessary in safety-critical ap-
plications where quality properties of systems have to be
verified.

This report has focused on communication learning
in collaborative settings. Some published work has also
touched on semi-cooperative and competitive settings.
Experiments have been conducted both with IC3Net and
TarMAC in a competitive predator-prey environment
[Singh et al., 2019; Das et al., 2019]. The only quali-
tative conclusion drawn from this is that the prey gains
nothing from communicating with the predators hunt-
ing it. It would however be unfair to conclude from this
that there is no role for communication between compet-
ing agents. Learning communication in competitive set-
tings is still a largely unexplored area. Communication
in the form of negotiation or threats often occur in adver-
sarial human communication. An interesting direction
of future work would be to investigate if similar behav-
ior could be learned through multi-agent RL. To prop-
erly test this other competitive settings than predator-
prey would have to be designed. Such settings could
be used for further experiments with existing models.
It would also be of interest to consider communication
learning methods with two messaging systems, one for
collaborating “teammate”-agents and one for competing
“opponent”-agents.

The publications considered in this report were se-
lected based on Google Scholar2 searches including the
keywords multi agent, learning, communication, commu-
nicate and reinforcement learning. The cited publica-
tions are believed to be of high scientific quality due to
being published in renowned peer-reviewed journals and
conferences.

2https://scholar.google.com/
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