Half-Time Seminar: Graph-Based Machine Learning for Spatio-Temporal Data

Joel Oskarsson, joel.oskarsson@liu.se

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

Discussion Leader: Zheng Zhao, Uppsala University

Discussed Papers

- [Paper 1] Joel Oskarsson, Per Sidén, and Fredrik Lindsten. "Scalable Deep Gaussian Markov Random Fields for General Graphs". In: Proceedings of the 39th International Conference on Machine Learning. PMLR. 2022
- [Paper 2] Joel Oskarsson, Per Sidén, and Fredrik Lindsten. "Temporal Graph Neural Networks for Irregular Data". In: Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. PMLR. 2023
- [Paper 3] Theodor Westny, Joel Oskarsson, Björn Olofsson, and Erik Frisk. "MTP-GO: Graph-Based Probabilistic Multi-Agent Trajectory Prediction with Neural ODEs". In: arXiv preprint (2023)

Outline

- Introduction
 - Spatio-temporal modeling
 - Graph-based machine learning
- Deep Gaussian Markov Random Fields (DGMRFs) [Paper 1]
- Temporal Graph Neural Networks (TGNNs) [Paper 2], [Paper 3]
- Summary and future research

Introduction

Modeling Spatio-Temporal Data

Spatial Graphs

Existing spatial networks¹

 $^1 \ensuremath{\bigodot}$ OpenStreetMap Contributors

Spatial Graphs

Existing spatial networks¹

 1 © OpenStreetMap Contributors

Constructing Spatial Graphs

Data on Graphs

- Graph $\mathcal{G} = (V, E)$
 - |V| = N nodes
 - Neigborhood n(i)
 - Node degree $d_i = |n(i)|$
- Observation of graph $\boldsymbol{y} \in \mathbb{R}^N$
 - y_i is observation of node i
- Node, edge and graph features

Graph-level prediction

Graph-level prediction

Node-level prediction

Graph-level prediction

Node-level prediction

Structure learning

Graph Neural Networks (GNNs)

- Message Passing Neural Networks (MPNNs)¹
- $h_i^{(l)}$ is representation of node *i* after layer *l*

¹Justin Gilmer et al. "Neural Message Passing for Quantum Chemistry". In: Proceedings of the 34th International Conference on Machine Learning. PMLR. 2017

Graph Neural Networks (GNNs)

- Message Passing Neural Networks (MPNNs)¹
- $h_i^{(l)}$ is representation of node *i* after layer *l*

$$egin{aligned} m{m}_i^{(l+1)} &= \sum_{j \in n(i)} M\Big(m{h}_i^{(l)},m{h}_j^{(l)},e_{j,i}\Big) \ m{h}_i^{(l+1)} &= U\Big(m{h}_i^{(l)},m{m}_i^{(l+1)}\Big) \end{aligned}$$

¹Justin Gilmer et al. "Neural Message Passing for Quantum Chemistry". In: Proceedings of the 34th International Conference on Machine Learning. PMLR. 2017

GNNs: GraphConv Example

• MPNN:

$$egin{aligned} m{m}_{i}^{(l+1)} &= \sum_{j \in n(i)} Mig(m{h}_{i}^{(l)},m{h}_{j}^{(l)},e_{j,i}ig) \ m{h}_{i}^{(l+1)} &= Uig(m{h}_{i}^{(l)},m{m}_{i}^{(l+1)}ig) \end{aligned}$$

• MPNN example: GraphConv¹

- Used in [Paper 2] and [Paper 3]

¹Christopher Morris et al. "Weisfeiler and leman go neural: Higher-order graph neural networks". In: *Proceedings of the AAAI conference on artificial intelligence*. 2019

Deep Gaussian Markov Random Fields

Setting of [Paper 1]

- Node prediction
- Single, fully known graph
- Subset of nodes observed

Probabilistic Model

$$egin{aligned} p(oldsymbol{x},oldsymbol{y}) &= p(oldsymbol{x}) p(oldsymbol{y}|oldsymbol{x}) \ &= p(oldsymbol{x}) \prod_{i=1}^N p(y_i|x_i) \end{aligned}$$

Probabilistic Model

$$egin{aligned} p(oldsymbol{x},oldsymbol{y}) &= p(oldsymbol{x}) p(oldsymbol{y}|oldsymbol{x}) \ &= p(oldsymbol{x}) \prod_{i=1}^N p(y_i|x_i) \end{aligned}$$

- Gaussian prior: $p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}, Q^{-1})$
- Likelihood: $p(y_i|x_i) = \mathcal{N}(y_i|x_i, \sigma^2)$
- Posterior of interest: $p(\boldsymbol{x}|\boldsymbol{y}_{\text{Obs.}})$

Deep Gaussian Markov Random Field (DGMRF)¹ Prior

• Define Gaussian prior using affine map g

$$\boldsymbol{z} = g(\boldsymbol{x}) = G\boldsymbol{x} + \boldsymbol{b}, \quad \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, I) \qquad \Rightarrow \quad \boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, (G^{\mathsf{T}}G)^{-1})$$

¹Per Sidén and Fredrik Lindsten. "Deep Gaussian Markov Random Fields". In: Proceedings of the 37th International Conference on Machine Learning. PMLR. 2020

Deep Gaussian Markov Random Field (DGMRF)¹ Prior

• Define Gaussian prior using affine map g

$$\boldsymbol{z} = g(\boldsymbol{x}) = G\boldsymbol{x} + \boldsymbol{b}, \quad \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, I) \qquad \Rightarrow \quad \boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, (G^{\mathsf{T}}G)^{-1})$$

• Layered structure $g(\boldsymbol{x}) = g^{(L)} \circ g^{(L-1)} \circ \cdots \circ g^{(1)}(\boldsymbol{x})$

¹Per Sidén and Fredrik Lindsten. "Deep Gaussian Markov Random Fields". In: Proceedings of the 37th International Conference on Machine Learning. PMLR. 2020

A DGMRF Layer for Graphs¹

$$\begin{split} h_i^{(l+1)} &= g^{(l+1)} \left(\boldsymbol{h}^{(l)} \right)_i \\ &= b + \alpha d_i^{\gamma} h_i^{(l)} + \sum_{j \in n(i)} \beta d_i^{\gamma - 1} e_{j,i} h_j^{(l)} \end{split}$$

• Trainable parameters α, β, γ and b

¹[Paper 1] Joel Oskarsson, Per Sidén, and Fredrik Lindsten. "Scalable Deep Gaussian Markov Random Fields for General Graphs". In: Proceedings of the 39th International Conference on Machine Learning. PMLR. 2022

DGMRF Layer as a MPNN

• DGMRF layer for graphs

$$\begin{split} m_i^{(l+1)} &= \sum_{j \in n(i)} \beta d_i^{\gamma - 1} e_{j,i} h_j^{(l)} \\ h_i^{(l+1)} &= b + \alpha d_i^{\gamma} h_i^{(l)} + m_i^{(l+1)} \end{split}$$

• MPNN

$$egin{aligned} m{m}_i^{(l+1)} &= \sum_{j \in n(i)} Migg(m{h}_i^{(l)},m{h}_j^{(l)},e_{j,i}igg) \ m{h}_i^{(l+1)} &= Uigg(m{h}_i^{(l)},m{m}_i^{(l+1)}igg) \end{aligned}$$

Training and Inference

- Training
 - Variational objective, ELBO maximization
- Posterior Inference for $p(\boldsymbol{x}|\boldsymbol{y}_{\text{Obs.}})$
 - Conjugate prior, analytical form

Results: California Housing Data

	Model	RMSE	CRPS
	Bayes LR MLP	8.872 7.094	4.834 4.525
 House values in 20 640 blocks in California¹ 50% of nodes observed Additional node features 	GCN GAT SVGP	6.837 6.788 7.287	4.273 4.348 3.930
	DGMRF, L = 1 $DGMRF, L = 2$ $DGMRF, L = 3$	5.894 5.810 5.804	3.078 3.041 3.039

 $^{^1 \}rm R.$ Kelley Pace and Ronald Barry. "Sparse spatial autoregressions". In: Statistics & Probability Letters 33 (1997)

Temporal Graph Neural Networks

Graph-Structured Time Series

- Temporal Graph Neural Networks (TGNNs)
 - GNN over graph
 - Sequence model over time

Graph-Structured Time Series

- Temporal Graph Neural Networks (TGNNs)
 - GNN over graph
 - Sequence model over time
- Gated Recurrent Unit (GRU)

$$\boldsymbol{h}_t = \operatorname{GRU}(\boldsymbol{h}_{t-1}, \boldsymbol{y}_t)$$

Graph-Structured Time Series

- Temporal Graph Neural Networks (TGNNs)
 - GNN over graph
 - Sequence model over time
- Gated Recurrent Unit (GRU)
 - $oldsymbol{h}_t = ext{GRU}(oldsymbol{h}_{t-1},oldsymbol{y}_t)$
 - Graph-GRU¹:

$$\boldsymbol{h}_{t}^{i} = \text{GRU} \bigg(\Big\{ \left(\boldsymbol{h}_{t-1}^{j}, y_{t}^{j} \right) \Big\}_{j \in \{i\} \cup n(i)} \bigg)$$

- Used in [Paper 2] and [Paper 3]

 1 Xujiang Zhao, Feng Chen, and Jin-Hee Cho. "Deep learning for predicting dynamic uncertain opinions in network data". In: *IEEE International Conference on Big Data*. 2018

[Paper 2]: TGNNs for Irregular Data¹

- Forecasting problems
- Irregular observations
 - Irregular time steps
 - Observing subset of nodes

¹[Paper 2] Joel Oskarsson, Per Sidén, and Fredrik Lindsten. "Temporal Graph Neural Networks for Irregular Data". In: Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. PMLR. 2023

Time-Continuous Latent States

- Time-continuous latent state in each node
- Dynamics in-between observations
 - Linear ODE
- State update at observation
 - Graph-GRU

Prediction and Results

• Forecasting by rolling out latent states

Prediction and Results

• Forecasting by rolling out latent states

- Evaluation
 - Traffic data (PEMS-BAY)
 - Climate data (USHCN)

Model	PEMS-BAY	USHCN	
Predict Previous	s 26.32	16.88	
GRU-D	8.79	8.03	
Transformer	12.05	7.36	
LG-ODE	27.00	-	
TGNN4I	7.10	6.72	

Multi-Agent Trajectory Prediction

- The trajectory prediction problem
 - Given historical positions
 - Predict future trajectory
- Multi-agent trajectory prediction

[Paper 3]: TGNNs for Multi-Agent Trajectory Prediction¹

- Agent interactions
- Traffic situation as graph

¹[Paper 3] Theodor Westny, Joel Oskarsson, Björn Olofsson, and Erik Frisk. "MTP-GO: Graph-Based Probabilistic Multi-Agent Trajectory Prediction with Neural ODEs". In: $arXiv \ preprint \ (2023)$

The MTP-GO Model

Results: Roundabout Scenario

Model	ADE	FDE	ANLL	FNLL
Constant Acc.	4.83	16.2		
Constant Vel.	6.49	17.1		
Seq2Seq	1.46	3.66		
S-LSTM	1.20	3.47	1.75	5.12
CS-LSTM	1.19	3.57	2.09	5.54
GNN-RNN	1.13	3.11		
mmTransformer	1.29	3.50		
Trajectron++	1.09	3.53		
MTP-GO	0.92	2.97	-0.22	3.85

Summary and Future Research

Summary

[Paper 1] DGMRF model for graph-structured data

- Probabilistic model for node-level prediction

[Paper 2] TGNNs for irregular data

- Time-continuous latent states

[Paper 3] TGNNs for multi-agent trajectory prediction

- Traffic agent interactions as graphs

(1) (2) (7)

[Paper 1] extension: Spatio-temporal data Application: Climate and weather modeling

Joel Oskarsson, joel.oskarsson@liu.se www.liu.se

